
Real-Time Workshop®

Embedded Coder Release
Notes

The Real-Time Workshop Embedded Coder 4.3 Release Notes describe the
changes introduced in the Release 14 with Service Pack 3 version of the
Real-Time Workshop Embedded Coder. The following topics are discussed in
these Release Notes:

• “New Features and Enhancements” on page 1-2

• “Major Bug Fixes” on page 1-6

• “Known Software and Documentation Problems” on page 1-7

• “Upgrading from an Earlier Release” on page 1-8

The Real-Time Workshop Embedded Coder Release Notes also provide
information about recent versions of the product, in case you are upgrading
from an earlier version:

• Chapter 2, “Real-Time Workshop Embedded Coder 4.2.1 Release Notes”

• Chapter 3, “Real-Time Workshop Embedded Coder 4.2 Release Notes”

• Chapter 4, “Real-Time Workshop Embedded Coder 4.1 Release Notes”

• Chapter 5, “Real-Time Workshop Embedded Coder 4.0 Release Notes”

• Chapter 6, “Real-Time Workshop Embedded Coder 3.2.1 Release Notes”

• Chapter 7, “Real-Time Workshop Embedded Coder 3.2 Release Notes”

• Chapter 8, “Real-Time Workshop Embedded Coder 3.1 Release Notes”

2

Contents

Real-Time Workshop Embedded Coder 4.3
Release Notes

1
New Features and Enhancements 1-2

Data Type Replacement . 1-2
HeaderFile Property Now Optional as Part of GetSet Data

Object . 1-4
Data Object Wizard Enhancements 1-4
Global Data Stores Can Be Initialized Using mpt.Signal

Object’s RTWInfo.InitialValue Property 1-5
Documentation Enhancements . 1-5

Major Bug Fixes . 1-6

Known Software and Documentation Problems 1-7

Upgrading from an Earlier Release 1-8
ERT Automatic Configuration Changes 1-8

Real-Time Workshop Embedded Coder 4.2.1
Release Notes

2
Major Bug Fixes . 2-2

Real-Time Workshop Embedded Coder 4.2
Release Notes

3
New Features and Enhancements 3-2

iii

C++ Target Language Support . 3-2
External Mode Support for ERT VxWorks Example

Target . 3-2
Custom Storage Classes with ERT S-Functions 3-3
Consistency Checking for ERT Target Options 3-3
Model Explorer “Alias Override Naming Rule” Check Box

Removed . 3-4
Model Explorer Data Object Header File No Longer

Generated If Header File Name Is Not Specified 3-4
Enhanced MPF Documentation of Managing Data

Dictionary . 3-5

Major Bug Fixes . 3-6

Real-Time Workshop Embedded Coder 4.1
Release Notes

4
Major Bug Fixes . 4-2

Upgrading from Version 4.0 . 4-3

Upgrading from Version 3.2.1 or 3.2 4-4
TMF File Update Required for Use with Release 14 or

Higher If Supporting ERT S-Function Generation 4-4
Custom Storage Class Compatibility Issues 4-5
Defining and Displaying Custom Target Options 4-6
Supporting Model Referencing in Custom Targets 4-7
Supporting Continuous Time in Custom Targets 4-8
rtwtypes.h Replaces tmwtypes.h . 4-9
Updating Customized Static Main Program Modules 4-10
Integer Code Only Option Replaced 4-11
Rate Grouping Compatibility Issues 4-11
Real-Time Object Structure Obsoleted by Real-Time Model

Structure . 4-12
rtmIsSampleHit and rtmIsSpecialSampleHit Macros

Obsolete . 4-12
RTWInfo Properties Assignment Warning Message 4-13

iv Contents

Real-Time Workshop Embedded Coder 4.0
Release Notes

5
New Features . 5-2

Expanded Documentation Collection 5-3
New ERT Target Options User Interface 5-4
GRT and ERT Target Unification . 5-10
Support for Continuous Time Blocks 5-11
Support for Continuous Solvers . 5-11
Support for Noninlined S-Functions 5-12
Module Packaging Features . 5-12
ASAP2 File Generation Changes . 5-14
Code Generation With User-Defined Data Types 5-14
Enhanced Custom Storage Classes 5-15
More Efficient Multi-Rate Multitasking Code

Generation . 5-16
More Efficient Task Scheduling for RTOS Targets 5-17
New Callbacks Defined for System Target Files 5-17
New Option to Control Template Makefile Output

Display . 5-18
Demo Updates . 5-19

Major Bug Fixes . 5-20

Real-Time Workshop Embedded Coder 3.2.1
Release Notes

6
New Features . 6-2

ERT Code Deployment Aids Added to GUI 6-2

Major Bug Fixes . 6-4

v

Real-Time Workshop Embedded Coder 3.2
Release Notes

7
New Features . 7-2

Advanced Code Generation Techniques Documented 7-2
New Code Generation Options . 7-3
Auto-Configuration of Models for Code Generation 7-5
Optimized ERT Targets for Fixed-Point and Floating-Point

Code Generation . 7-6
Code Templates for Customizing Generated Code 7-7
Custom File Banner Generation . 7-7
Passing Model I/O Arguments to the model_step

Function . 7-8

Real-Time Workshop Embedded Coder 3.1
Release Notes

8
New Features . 8-2

Model Assistant Tool . 8-2

vi Contents

1

Real-Time Workshop
Embedded Coder 4.3
Release Notes

1 Real-Time Workshop Embedded Coder 4.3 Release Notes

New Features and Enhancements
Real-Time Workshop Embedded Coder Version 4.3 introduces the following
new features and enhancements:

• “Data Type Replacement” on page 1-2

• “HeaderFile Property Now Optional as Part of GetSet Data Object” on
page 1-4

• “Data Object Wizard Enhancements” on page 1-4

• “Global Data Stores Can Be Initialized Using mpt.Signal Object’s
RTWInfo.InitialValue Property” on page 1-5

• “Documentation Enhancements” on page 1-5

Data Type Replacement
This release provides the ability to replace built-in data type names with
user-defined replacement data type names in the generated code for ERT
target models.

As in previous releases, you can register user-defined data types and specify
their associated header files using mechanisms described in the “Managing
the Data Dictionary” chapter of the Real-Time Workshop Embedded Coder
Module Packaging Features document. User-defined data types can be
automatically created as Simulink.AliasType objects in the base workspace.

This release augments the existing mechanisms for registering user-defined
data types by adding:

• The Data Type Replacement pane, a new subpane under the Real-Time
Workshop pane of the Configuration Parameters dialog. This pane
provides an improved user interface for mapping built-in data types to
user-defined replacement data types.

• Consistency checks to ensure that your specified data type replacements
are consistent with your model’s data types.

• Many-to-one data type replacement, the ability to map multiple built-in
data types to one replacement data type in generated C code. (Many-to-one
data type replacement is not supported for C++ code generation.) For

1-2

New Features and Enhancements

example, built-in data types uint8 and boolean could both be replaced in
your generated C code by a data type U8 that you have previously defined.

Data type replacement is available for code generated using Real-Time
Workshop Embedded Coder, whether from Simulink, Stateflow charts, or
Embedded MATLAB blocks.

Specifying Replacement Data Types
To specify replacement data types for a Simulink model, set its System
target file (on the Real-Time Workshop pane of the Configuration
Parameters dialog) to ert.tlc or an ERT-based target and then use the Data
Type Replacement pane to map the names of built-in data types to the
names of user-defined replacement data types. See “Replacing Built-In Data
Type Names in Generated Code” in the Real-Time Workshop Embedded Coder
Module Packaging Features documentation for details.

Data Type Replacement Limitations

• Data type replacement does not support multiple levels of mapping. Each
replacement data type name maps directly to one or more built-in data
types.

• Data type replacement is not supported for simulation target code
generation for referenced models.

• Data type replacement is not supported if the GRT compatible call
interface option is selected for your model.

• Data type replacement occurs during code generation for all .c, .cpp, and
.h files generated in build directories (including top and referenced model
build directories) and in the _sharedutils directory. Exceptions are as
follows:

rtwtypes.h
model_sf.c or .cpp (ERT S-function wrapper)
model_dt.h (C header file supporting external mode)
model_capi.c or .cpp
model_capi.h

1-3

1 Real-Time Workshop Embedded Coder 4.3 Release Notes

• Data type replacement is not supported for complex data types.

• Many-to-one data type replacement is not supported for C++ code
generation.

HeaderFile Property Now Optional as Part of GetSet
Data Object
In previous releases, a Simulink.Signal or mpt.Signal object of custom
storage class GetSet was required to specify its HeaderFile property. The
specified header file was then added as an #include in the generated code.

This release makes it optional to specify the HeaderFile property on data
objects of the GetSet custom storage class. This accommodates users who
prefer to use a model’s custom code options to include header files.

Note If you omit the HeaderFile property for a GetSet data object, you
must specify a header file by an alternative means, such as the Header file
field of the Real-Time Workshop/Custom Code pane of the Configuration
Parameters dialog. Otherwise, the generated code might not compile or might
function improperly.

Data Object Wizard Enhancements
The Data Object Wizard has been enhanced with new search options for
including or omitting the following types of data objects for searches:

Alias types
Block outputs
Data stores
Parameters
Root inputs
Root outputs
States

For details on these enhancements, see “Data Object Wizard” in the Simulink
documentation.

1-4

New Features and Enhancements

Global Data Stores Can Be Initialized Using
mpt.Signal Object’s RTWInfo.InitialValue Property
Global data stores may be defined in the base workspace using mpt.Signal
objects (as well as Simulink.Signal objects or any of the subclasses of
Simulink.Signal). In Release 14SP3, you can use the mpt.Signal object’s
RTWInfo.InitialValue property to initialize a global data store.

If you set the RTWInfo.InitialValue property of the mpt.Signal object to
a nonempty value, the value of that property becomes the initial condition
of the global data store. If the InitialValue property of the object is empty
([]), the initial value of the global data store remains 0 (for example, false
for Boolean data).

Documentation Enhancements
The following areas of the Real-Time Workshop Embedded Coder
documentation have been corrected or improved:

• “Basic Tutorial” in the Module Packaging Features documentation

• “Comparison of a Template and Its Generated File” in the Module
Packaging Features documentation

• “Parameter and Signal Properties” in the Module Packaging Features
documentation

1-5

1 Real-Time Workshop Embedded Coder 4.3 Release Notes

Major Bug Fixes
To view major bug fixes made in Release 14SP3 for Real-Time Workshop
Embedded Coder, use the Bug Reports interface on the MathWorks Web site.

Note If you are not already logged in to Access Login when you link to the
Bug Reports interface, you will be prompted to log in or create an Access
Login account.

After you are logged in, use this Bug Reports link. You will see the bug report
for Real-Time Workshop Embedded Coder. The report is sorted with bug
fixes listed first, and then open bugs.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

Bug fixes made before Release 14SP2 are not included in the Bug Reports
interface. For earlier bug fixes, see

• Release 14SP1 “Major Bug Fixes” on page 4-2

• Release 14 “Major Bug Fixes” on page 5-20

• Release 13SP1+ “Major Bug Fixes” on page 6-4

1-6

http://www.mathworks.com/support/bugreports/?product=EC&release=R14SP3

Known Software and Documentation Problems

Known Software and Documentation Problems
To view important open bugs in Release 14SP3 for Real-Time Workshop
Embedded Coder, use the Bug Reports interface on the MathWorks Web site.

Note If you are not already logged in to Access Login when you link to the
Bug Reports interface, you will be prompted to log in or create an Access
Login account.

After you are logged in, use this Bug Reports link. You will see the bug report
for Real-Time Workshop Embedded Coder. The report is sorted with bug fixes
listed first, and then open bugs. You can select the Status column to list the
open bugs first.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

1-7

http://www.mathworks.com/support/bugreports/?product=EC&release=R14SP3

1 Real-Time Workshop Embedded Coder 4.3 Release Notes

Upgrading from an Earlier Release

ERT Automatic Configuration Changes
If you generate code for ERT-based models that use the automatic model
configuration feature, you should be aware of the following auto-configuration
related changes in this release. If you supply your own script for ERT
auto-configuration, you should consider modifying your code to take advantage
of these changes.

• The ert_config_opt auto-configuration function that is invoked at the
'entry' hook during code generation now additionally runs at target
selection time (that is, when you use the Real-Time Workshop pane of
the Configuration Parameters dialog to select an auto-configuration target).

• To support this dual invocation, the ert_config_opt function now
takes variable input arguments. The second argument still specifies
'optimized_fixed_point' or 'optimized_floating_point' as
before, but the first argument now specifies either a model name,
for 'entry'-hook invocation, or a configuration set handle, for
target-selection invocation. (The function is located in the file
matlabroot/toolbox/rtw/targets/ecoder/ert_config_opt.m.)

• The 'entry' hook in the example hook file ert_make_rtw_hook.m has
added code to report changes in the configuration set caused by invoking
ert_config_opt (via gateway routine ert_auto_configuration) during
code generation. (The example 'entry' hook is located in the file
matlabroot/toolbox/rtw/targets/ecoder/ert_make_rtw_hook.m.)

If you supply your own auto-configuration script in place of the default version
of ert_config_opt, your auto-configuration code will continue to be invoked
and execute at the 'entry' hook. However, to additionally run your code at
target selection time, you must modify your script to support the variable
input arguments in the manner shown in ert_config_opt.m.

1-8

2

Real-Time Workshop
Embedded Coder 4.2.1
Release Notes

2 Real-Time Workshop Embedded Coder 4.2.1 Release Notes

Major Bug Fixes
To view major bug fixes made in Release 14SP2+ for Real-Time Workshop
Embedded Coder, use the Bug Reports interface on the MathWorks Web site.

Note If you are not already logged in to Access Login when you link to the
Bug Reports interface, you will be prompted to log in or create an Access
Login account.

After you are logged in, use this Bug Reports link. You will see the bug report
for Real-Time Workshop Embedded Coder. The report is sorted with bug
fixes listed first, and then open bugs.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

Bug fixes made before Release 14SP2 are not included in the Bug Reports
interface. For earlier bug fixes, see

• Release 14SP1 “Major Bug Fixes” on page 4-2

• Release 14 “Major Bug Fixes” on page 5-20

• Release 13SP1+ “Major Bug Fixes” on page 6-4

2-2

http://www.mathworks.com/support/bugreports/?product=EC&release=R14SP2%2B

3

Real-Time Workshop
Embedded Coder 4.2
Release Notes

3 Real-Time Workshop Embedded Coder 4.2 Release Notes

New Features and Enhancements
Real-Time Workshop Embedded Coder Version 4.2 introduces the following
new features and enhancements.

• “C++ Target Language Support” on page 3-2

• “External Mode Support for ERT VxWorks Example Target” on page 3-2

• “Custom Storage Classes with ERT S-Functions” on page 3-3

• “Consistency Checking for ERT Target Options” on page 3-3

• “Model Explorer “Alias Override Naming Rule” Check Box Removed” on
page 3-4

• “Model Explorer Data Object Header File No Longer Generated If Header
File Name Is Not Specified” on page 3-4

• “Enhanced MPF Documentation of Managing Data Dictionary” on page 3-5

C++ Target Language Support
This release introduces support for generating C++ code. The primary use for
this feature is to facilitate integration of generated code with legacy or custom
user code written in C++. For detailed information about C++ code generation
and limitations, see the “Real-Time Workshop 6.2 Release Notes”.

External Mode Support for ERT VxWorks Example
Target
The ERT VxWorks example target now includes full support for Simulink®

external mode. External mode lets you use your Simulink block diagram
as a front end for a target program that runs on external hardware or in a
separate process on your host computer, and allows you to tune parameters
and view or log signals as the target program executes. With this release, you
can generate code to support external mode communication between host
(Simulink) and ERT VxWorks target systems. For more information, see
“Using External Mode with the ERT Target” in the Real-Time Workshop
Embedded Coder documentation.

3-2

New Features and Enhancements

Custom Storage Classes with ERT S-Functions
Custom storage classes (CSCs) now can be used with ERT S-functions. This
capability was disabled in Version 4.0, Release 14, and is reenabled in this
release.

For more information, see “Custom Storage Classes” in the Real-Time
Workshop Embedded Coder documentation.

Consistency Checking for ERT Target Options
Pre-model-compilation consistency checking has been added to detect and
warn against conflicting combinations of ERT target configuration options.
(Configuration options that are available for the ERT target are described
in “Mapping Application Requirements to Configuration Options” in the
Real-Time Workshop Embedded Coder documentation.)

Error messages now are issued for the following conflicts:

• GRT compatible call interface (GRTInterface) is on and Support
floating-point numbers (!PurelyIntegerCode) is off

• MAT-file logging (MatFileLogging) is on and Support floating-point
numbers (!PurelyIntegerCode) is off

• Support non-finite numbers (SupportNonFinite) is off and MAT-file
logging (MatFileLogging) is on

• GRT compatible call interface (GRTInterface) is on and Single
update/output function (CombineOutputUpdateFcns) is on

• MAT-file logging (MatFileLogging) is on and Terminate function
required (IncludeMdlTerminateFcn) is off

• MAT-file logging (MatFileLogging) is on and Suppress error status in
real-time model data structure (SuppressErrorStatus) is on

3-3

3 Real-Time Workshop Embedded Coder 4.2 Release Notes

Warning messages now are issued for the following conflicts:

• Support non-finite numbers (SupportNonFinite) is off and Support
non-inlined s-functions (SupportNonInlinedSFcns) is on

• Support non-finite numbers (SupportNonFinite) is on and Support
floating-point numbers (!PurelyIntegerCode) is off

• Support non-inlined S-functions (SupportNonInlinedSFcns) is on and
Support floating-point numbers (!PurelyIntegerCode) is off

Model Explorer “Alias Override Naming Rule” Check
Box Removed
Before this release, the Model Explorer dialog box allowed you to select the
Alias override naming rule check box for an mpt data object. As explained
in the Module Packaging Features document, this resulted in the name that
you typed in the Alias field overriding the global naming rule for the selected
data object. This only applied to mpt data objects, not to Simulink data objects.

This release removes the Alias overrides naming rule check box. Now,
the override works the same way for mpt and for Simulink data objects: As
explained in the documentation, if the Alias field is empty, the global naming
rule (that you select on the Configuration Parameters dialog box) applies to
all data objects. But if you do specify a name in the Alias field, this overrides
the naming rule for that data object. There is no need for the check box.

Model Explorer Data Object Header File No Longer
Generated If Header File Name Is Not Specified
Before this release, when you specified a Definition file name on the Model
Explorer dialog box for a data object and did not specify a Header file name,
the code generator generated a header file in which it declared the data object.
The code generator used the same name for the header file (for example,
data.h) as you specified for the definition file (for example, data.c).

With this release, when you specify a Definition file name and do not specify
a Header file name, the code generator does not generate a header file. The
code generator declares the data object according to the global naming rule.
In this case, the code generator assumes that you do not want it to generate
the header file.

3-4

New Features and Enhancements

Enhanced MPF Documentation of Managing Data
Dictionary
This release restructures the “Managing the Data Dictionary” chapter in
Module Packaging Features. The revised material explains how to create
Simulink data objects using the Data Object Wizard, and compares this with
creating mpt data objects.

3-5

3 Real-Time Workshop Embedded Coder 4.2 Release Notes

Major Bug Fixes
To view major bug fixes made in Release 14SP2 for Real-Time Workshop
Embedded Coder, use the Bug Reports interface on the MathWorks Web site.

Note If you are not already logged in to Access Login when you link to the
Bug Reports interface, you will be prompted to log in or create an Access
Login account.

After you are logged in, use this Bug Reports link. You will see the bug report
for Real-Time Workshop Embedded Coder. The report is sorted with bug
fixes listed first, and then open bugs.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the link provided.

Bug fixes made before Release 14SP2 are not included in the Bug Reports
interface. For earlier bug fixes, see

• Release 14SP1 “Major Bug Fixes” on page 4-2

• Release 14 “Major Bug Fixes” on page 5-20

• Release 13SP1+ “Major Bug Fixes” on page 6-4

3-6

http://www.mathworks.com/support/bugreports/?product=EC&release=R14SP2

4

Real-Time Workshop
Embedded Coder 4.1
Release Notes

4 Real-Time Workshop Embedded Coder 4.1 Release Notes

Major Bug Fixes
Real-Time Workshop Embedded Coder 4.1 includes several bug fixes made
since Version 4.0. This section describes the particularly important Version
4.1 bug fixes.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the “bug fixes” link provided.

4-2

Upgrading from Version 4.0

Upgrading from Version 4.0
Documentation for Real-Time Workshop Embedded Coder in Version
4.1 corrects errors, omissions, and inconsistencies in the Version 4.0
documentation. Topics affected most significantly by these changes include
the following:

• Discussion of data structures and code modules

• Description of the static main program module

• Discussion of the interaction between Simulink block comments and
Simulink block description configuration parameters

• Custom storage classes

• Template makefile modifications for supporting model reference features

• Description of makefile variable SYS_TARGET_FILE

• Custom target configuration tutorial

• Interfacing an integrated development environment

• Tradeoffs for device driver development

• Writing a device driver C-mex S-function

• Single-model approach to using device drivers in simulation

• Addition of a basic tutorial to the “Getting Started” chapter of Module
Packaging Features

• Addition of data placement rules in the “Referenced Tables” appendix of
Module Packaging Features

4-3

4 Real-Time Workshop Embedded Coder 4.1 Release Notes

Upgrading from Version 3.2.1 or 3.2
This section discusses the following issues pertaining to upgrades from
Real-Time Workshop Embedded Coder Version 3.2.1 or 3.2 to Version 4.1:

• “TMF File Update Required for Use with Release 14 or Higher If
Supporting ERT S-Function Generation” on page 4-4

• “Custom Storage Class Compatibility Issues” on page 4-5

• “Defining and Displaying Custom Target Options” on page 4-6

• “Supporting Model Referencing in Custom Targets” on page 4-7

• “Supporting Continuous Time in Custom Targets” on page 4-8

• “rtwtypes.h Replaces tmwtypes.h” on page 4-9

• “Updating Customized Static Main Program Modules” on page 4-10

• “Integer Code Only Option Replaced” on page 4-11

• “Rate Grouping Compatibility Issues” on page 4-11

• “Real-Time Object Structure Obsoleted by Real-Time Model Structure”
on page 4-12

• “rtmIsSampleHit and rtmIsSpecialSampleHit Macros Obsolete” on page
4-12

• “RTWInfo Properties Assignment Warning Message” on page 4-13

TMF File Update Required for Use with Release 14 or
Higher If Supporting ERT S-Function Generation
To use a Release 13 based TMF that supports ERT S-function generation
with Release 14 or higher, you must update the TMF to include the following
definitions:

LIBFIXPT=$(MATLAB_ROOT)\extern\lib\win32\microsoft\msvc50\libfixedpoint.lib

LIBS = $(LIBS) $(LIBFIXPT)

4-4

Upgrading from Version 3.2.1 or 3.2

For example:

1 Search for an if statement similar to the following:

!if $(B_ERTSFCN) == 1
ERT_SFUN = ..\$(MODEL)_sf.$(MEXEXT)
ERT_SFUN_SRC = $(MODEL)_sf.c
MEX = $(MATLAB_BIN)\mex
!endif

The lines of code in the if statement may vary slightly depending on the
make utility you are using.

2 Add the LIBFIXPT and LIBS definitions between the MEX definition and
the !endif as follows:

!if $(B_ERTSFCN) == 1

ERT_SFUN = ..\$(MODEL)_sf.$(MEXEXT)

ERT_SFUN_SRC = $(MODEL)_sf.c

MEX = $(MATLAB_BIN)\mex

LIBFIXPT =$(MATLAB_ROOT)\extern\lib\win32\microsoft\msvc50\libfixedpoint.lib

LIBS = $(LIBS) $(LIBFIXPT)

!endif

For more examples, see the supplied Real-Time Workshop TMFs.

Custom Storage Class Compatibility Issues
Prior to 4.0, custom storage classes were implemented with special
Simulink.CustomSignal and Simulink.CustomParameter classes.

In 4.0 and higher, the full functionality of the Simulink.CustomSignal and
Simulink.CustomParameter classes is included in the Simulink.Signal and
Simulink.Parameter classes. Consider replacing Simulink.CustomSignal
and Simulink.CustomParameter objects in your models with equivalent
Simulink.Signal and Simulink.Parameter objects.

4-5

4 Real-Time Workshop Embedded Coder 4.1 Release Notes

If you prefer, you can continue to use the Simulink.CustomSignal and
Simulink.CustomParameter classes in the current release. However, note
that the following changes have been implemented in these classes:

• The Internal storage class has been removed from the enumerated values
of the RTWInfo.CustomStorageClass property. Internal storage class is
no longer supported.

• For the ExportToFile and ImportFromFile storage
classes, the RTWInfo.CustomAttributes.FileName and
RTWInfo.CustomAttributes.IncludeDelimeter properties have been
combined into a single property, RTWInfo.CustomAttributes.HeaderFile.
When specifying a header file, include both the filename and the required
delimiter as you want them to appear in generated code, as in the following
example:

myobj.RTWInfo.CustomAttributes.HeaderFile = '<myheader.h>';

• Prior to 4.0, you created user-defined CSCs by designing custom packages
that included the CSC definitions (as described in the cscdesignintro
tutorial demo). This technique for creating CSCs is obsolete. For a
description of the current procedure, which is much simpler, see “Creating
Packages with CSC Definitions” in the "Custom Storage Classes" chapter of
the Real-Time Workshop Embedded Coder documentation.

If you designed your own custom packages containing CSCs prior to 4.0,
The MathWorks strongly recommends that you convert them to 4.0 CSCs.
The conversion procedure is described in “Converting Older Packages to
Use CSC Registration Files” in the "Custom Storage Classes" chapter of the
Real-Time Workshop Embedded Coder documentation.

Defining and Displaying Custom Target Options
For Release 14, extensive improvements and revisions have been made in the
appearance and layout of code generation options and other target-specific
options for Real-Time Workshop targets. If you have developed a custom
target, you should take advantage of the Model Explorer and Configuration
Parameters dialogs to present target options to end users. If you choose not
to, a mechanism for using the old-style Simulation Parameters dialog is
available for backwards compatibility.

4-6

Upgrading from Version 3.2.1 or 3.2

The “System Target Files” chapter of Developing Embedded Targets discusses
compatibility issues and solutions related to the definition and display of
target-specific options for custom targets.

• Callback compatibility: If the rtwoptions array in your custom system
target file contains callbacks, you must convert your callbacks to use the
callback compatibility API provided in this release. See “Compatibility
Issues for rtwoptions Callbacks” in the “System Target Files” chapter of
Developing Embedded Targets.

• Target options inheritance: If your custom target is derived from another
target and inherits options, you need change your system target file to use a
new inheritance mechanism. See “Release 14 Target Options Inheritance”
in the “System Target Files” chapter of Developing Embedded Targets.

• Display of target options: Your target options are displayed differently, and
you might want to reorganize them. See “Appearance of Target Options
in Release 14 Dialogs” in the “System Target Files” chapter of Developing
Embedded Targets for information on how custom target options are
displayed.

Supporting Model Referencing in Custom Targets
Existing custom targets require a number of modifications for code generation
compatibility with the model reference features introduced in Release 14. The
“Supporting Model Referencing” chapter of Developing Embedded Targets
provides the information you need to adapt your target to support model
referencing. Most of the guidelines concern required modifications to the
system target file and template makefile.

The list below summarizes general requirements and issues for model
reference compatibility that are discussed in the “Supporting Model
Referencing” chapter:

• A model reference compatible target must be derived from the ERT or
GRT targets.

• Your system target file must declare model reference compatibility.

• Your template makefile must define a number of makefile tokens, variables
and rules specifically for model referencing support.

4-7

4 Real-Time Workshop Embedded Coder 4.1 Release Notes

• To support model reference builds, your template makefile must support
use of the shared utilities directory.

• When generating code from a model that references another model, both
the top-level model and the referenced models must be configured for the
same code generation target.

• Note that the External mode option is not supported in model reference
Real-Time Workshop target builds. If the user has selected this option, it
is ignored during code generation.

For general information about model referencing, see the Real-Time Workshop
documentation.

Supporting Continuous Time in Custom Targets
As of Release 14, the ERT target supports continuous time. If you want
your custom ERT-based target to take advantage of this feature, you must
update your template makefile (TMF) and the static main program module
(for example, mytarget_main.c) for your target.

Template Makefile Modifications
Add the NCSTATES token expansion after the NUMST token expansion, as
follows:

NUMST = |>NUMST<|
NCSTATES = |>NCSTATES<|

In addition, add NCSTATES to the CPP_REQ_DEFINES macro, as in the following
example:

CPP_REQ_DEFINES = -DMODEL=$(MODEL) -DNUMST=$(NUMST) -DNCSTATES=$(NCSTATES) \

-DMAT_FILE=$(MAT_FILE)

-DINTEGER_CODE=$(INTEGER_CODE) \

-DONESTEPFCN=$(ONESTEPFCN) -DTERMFCN=$(TERMFCN) \

-DHAVESTDIO

-DMULTI_INSTANCE_CODE=$(MULTI_INSTANCE_CODE) \

-DADD_MDL_NAME_TO_GLOBALS=$(ADD_MDL_NAME_TO_GLOBALS)

4-8

Upgrading from Version 3.2.1 or 3.2

Modifications to Main Program Module
The main program module defines a static main function that manages task
scheduling for all supported tasking modes of single- and multiple-rate
models. NUMST (the number of sample times in the model) determines whether
the main function calls multirate or single-rate code.

However, when the model has continuous time, it is incorrect to rely on NUMST
directly.

When the model has continuous time and the flag TID01EQ is true, both
continuous time and the fastest discrete time are treated as one rate in
generated code. The code associated with the fastest discrete rate is guarded
by a major time step check. When the model has only two rates, and TID01EQ
is true, the generated code has a single-rate call interface.

To support models that have continuous time, update the static main module
to take TID01EQ into account, as follows:

1 Before NUMST is referenced in the file, add the following code:

#if defined(TID01EQ) && TID01EQ == 1 && NCSTATES == 0
#define DISC_NUMST (NUMST - 1)
#else
#define DISC_NUMST NUMST
#endif

2 Replace all instances of NUMST in the file by DISC_NUMST.

rtwtypes.h Replaces tmwtypes.h
The ERT target now generates an optimized rtwtypes.h header file, which
includes only the necessary definitions required by the target. Most generated
code modules require these definitions. This header file replaces the static
tmwtypes.h header file. Note that non-ERT targets still use the tmwtypes.h
header file.

4-9

4 Real-Time Workshop Embedded Coder 4.1 Release Notes

Updating Customized Static Main Program Modules
If you are upgrading and your application uses a customized version of the
static main program module ert_main.c, open the module and make the
following changes:

1 Search for RT_MDL. This search brings you to the "Required defines" section.

2 Replace

#define RT_MDL CONCAT(MODEL,_rt0)

with

#define RT_MDL CONCAT(MODEL,_M)

3 Search for tmwtypes.h. This search brings you to the "Includes" section.

4 Add the following include statement.

#include "rtwtypes.h"

5 Delete the following include statements.

#include "tmwtypes.h"
#include "simstruc_types.h"

6 Just below the #include section, add the following preprocessor conditional
code, which determines whether to set up multitasking mode. Previously,
this code resided in simstruc_types.h.

/*========================*
* Setup for multitasking *
========================/

#if defined(MT)
if MT == 0
undef MT
else
define MULTITASKING 1
endif
#endif

4-10

Upgrading from Version 3.2.1 or 3.2

For more information about ert_main.c, see “The Static Main Program
Module” in the Real-Time Workshop Embedded Coder documentation.

The MathWorks recommends that you generate a target-specific main
program module rather than use a customized version of the static module,
ert_main.c. For details, see “Generating the Main Program” and “Custom
File Processing” in the Real-Time Workshop Embedded Coder documentation.

Integer Code Only Option Replaced
The Support floating-point numbers option replaces, and inverts the
logic of, the Integer code only option that was supported in previous
releases. To generate pure integer code in new models, deselect the Support
floating-point numbers option.

Note that for compatibility, models that were configured for Integer code
only prior to Release 14 are automatically configured with Support
floating-point numbers deselected, and generate pure integer code.

Rate Grouping Compatibility Issues
To take full advantage of the efficiency of rate grouping:

• Your multirate inlined S-functions must be upgraded to be fully rate
grouping compliant. Existing S-functions continue to operate correctly
without change, but we strongly recommend that you upgrade your
TLC S-function implementations. See “Rate Grouping Compliance and
Compatibility Issues” in the "Data Structures and Program Execution"
chapter of the Real-Time Workshop Embedded Coder documentation.

• If you have previously generated and modified ert_main.c (as is typical of
many ERT-based custom targets) take care to preserve your modifications
and make equivalent changes to the regenerated ert_main.c. After you
have done so, set the TLC variable RateBasedStepFcn to 1, as described
in “Rate Grouping and the Static Main Program” in the "Data Structures
and Program Execution" chapter of the Real-Time Workshop Embedded
Coder documentation.

4-11

4 Real-Time Workshop Embedded Coder 4.1 Release Notes

Real-Time Object Structure Obsoleted by Real-Time
Model Structure
In MATLAB® Release 13, the real-time model (model_M) data structure
replaced the real-time object (model_rtO) data structure. However, use of use
of the older structure was still supported for backward compatibility.

Real-Time Workshop Embedded Coder 4.0 requires use of the real-time
model data structure. If you have developed a custom target that references
model_rtO (for example, in a customizedert_main.c module) you must
replace them with references to model_M.

See the “Data Structures and Program Execution” chapter of the Real-Time
Workshop Embedded Coder documentation for further information about
the real-time model data structure.

rtmIsSampleHit and rtmIsSpecialSampleHit Macros
Obsolete
The following macros are now obsolete and should not be used with the ERT
target:

• rtmIsSampleHit

• rtmIsSpecialSampleHit

This does not cause a problem unless you have coded these macros directly
into your TLC files. The recommended practice is to use the following TLC
library functions:

• %<LibIsSFcnSampleHit(tid)>

• %<LibIsSFcnSpecialSampleHit(tid)>

If you have used these functions, they operate transparently.

4-12

Upgrading from Version 3.2.1 or 3.2

RTWInfo Properties Assignment Warning Message
This note describes a minor change in behavior when the RTWInfo properties
of a data object are assigned incorrectly.

You can assign a custom storage class to a data object either by using
the Simulink Model Explorer, or by setting the RTWInfo properties via
MATLAB commands. (See also the “Custom Storage Classes” chapter
in the Real-Time Workshop Embedded Coder documentation.) If you use
MATLAB commands to assign a custom storage class, you must set both the
RTWInfo.CustomStorageClass and RTWInfo.StorageClass fields. Make
sure that the RTWInfo.StorageClass property is set to 'Custom', as in the
following example.

aa = Simulink.Signal;
aa.RTWInfo.StorageClass = 'Custom';
aa.RTWInfo.CustomStorageClass = 'Struct';
aa.RTWInfo.CustomAttributes.StructName = 'mySignals';

If the RTWInfo.StorageClass is not set correctly as shown above, the
assigned custom storage class (RTWInfo.CustomStorageClass) are ignored
during code generation. In such cases, a warning is displayed at the time
RTWInfo.CustomStorageClass is assigned, for example

foo = Simulink.Signal
foo.RTWInfo.CustomStorageClass = 'Struct'

Warning: The 'CustomStorageClass' property of RTWInfo will have
no effect unless the 'StorageClass' property is set to 'Custom'.

Previously, the warning was displayed at the time RTWInfo.StorageClass
was assigned.

4-13

4 Real-Time Workshop Embedded Coder 4.1 Release Notes

4-14

5

Real-Time Workshop
Embedded Coder 4.0
Release Notes

5 Real-Time Workshop Embedded Coder 4.0 Release Notes

New Features
This section summarizes the new features and enhancements introduced in
the Real-Time Workshop Embedded Coder 4.0. The new features include:

• “Expanded Documentation Collection” on page 5-3

• “New ERT Target Options User Interface” on page 5-4

• “GRT and ERT Target Unification” on page 5-10

• “Support for Continuous Time Blocks” on page 5-11

• “Support for Noninlined S-Functions” on page 5-12

• “Module Packaging Features” on page 5-12

• “ASAP2 File Generation Changes” on page 5-14

• “Code Generation With User-Defined Data Types” on page 5-14

• “Enhanced Custom Storage Classes” on page 5-15

• “More Efficient Multi-Rate Multitasking Code Generation” on page 5-16

• “More Efficient Task Scheduling for RTOS Targets” on page 5-17

• “New Callbacks Defined for System Target Files” on page 5-17

• “New Option to Control Template Makefile Output Display” on page 5-18

• “Demo Updates” on page 5-19

If you are upgrading from a version prior to Version 4.0, then also see “New
Features” on page 7-2 in the Real-Time Workshop Embedded Coder 3.2
Release Notes.

5-2

New Features

Expanded Documentation Collection
The Real-Time Workshop Embedded Coder documentation collection has been
expanded and includes following documents:

User’s Guide Describes Embedded Real-Time
(ERT) model execution, timing, and
task management; the rtModel data
structure; how to interface to and
call model code; ERT code generation
options and optimization tips; custom
storage classes; and advanced code
generation techniques.

Module Packaging Features Describes features teams of engineers
can apply to generate ANSI/ISO C
production code and executables
for large-scale, multimodel control
system applications.

Developing Embedded Targets Describes requirements and
implementation details for creating
custom embedded targets based
on the ERT target. It includes
detailed information on the
structure and organization of target
directories, system target files,
and template makefiles; how to
support the Real-Time Workshop
model referencing feature; how
to implement device drivers; and
operation of the build process and
how to customize it.

5-3

5 Real-Time Workshop Embedded Coder 4.0 Release Notes

New ERT Target Options User Interface
You can configure ERT target code generation options in the new Simulink
Model Explorer and Configuration Parameters dialog. Before working with
the ERT target in this new environment, you should become familiar with

• Configuration sets and how to view and edit them in the Model Explorer
and the Configuration Parameters dialog. See Using Simulink and the
“Simulink 6.0 Release Notes” for details.

• The general Real-Time Workshop code generation options and use of the
System Target File Browser. See the Real-Time Workshop documentation
and the “Real-Time Workshop 6.0 Release Notes” for details.

Some panes of the new Configuration Parameters dialog (for example, the
Templates and Interface panes) contain only ERT-specific options. Others,
such as the Real-Time Workshop pane, display a combination of general
Real-Time Workshop options and ERT target options.

Note If you have developed a custom target based on the ERT target (or
any other Real-Time Workshop target) see “Defining and Displaying Custom
Target Options” on page 4-6 for a discussion of compatibility issues that may
affect the appearance and operation of your target.

The following table summarizes new and revised ERT target code generation
options.

Pane and Subpane Option Usage

Real-Time Workshop Include hyperlinks to model Include or suppress hyperlinks
from generated code to the
source blocks in the model.

Launch report after code
generation completes

Automatically display the
HTML report in a MATLAB
web browser window after
code generation.

5-4

New Features

Pane and Subpane Option Usage

Real-Time Workshop:
Comments

Simulink block descriptions Include text specified in
the Description field of
Block Properties dialogs as
comments in the generated
code for the corresponding
blocks.

Stateflow object descriptions Include text specified in the
Description field of state
object Properties dialogs as
comments in the generated
code for the corresponding
objects.

Simulink data object
descriptions

Include text specified in the
Description field of object
properties defined in the
Simulink Model Explorer as
comments in the generated
code for the corresponding
objects.

Custom comments (MPT
objects only)

Include comments just
above signals and parameter
identifiers in the generated
code as specified in an M-code
or TLC function.

Real-Time Workshop: Symbols Symbol format Customize generated symbols
for signals, parameters, and
other objects in a model based
on a macro string that specifies
whether and in what order
substrings are to be included
in the symbols.

5-5

5 Real-Time Workshop Embedded Coder 4.0 Release Notes

Pane and Subpane Option Usage

Minimum mangle length Specify the minimum number
of characters to be used
for name mangling strings
generated and applied to
symbols to avoid name
collisions.

Maximum identifier length Specify the maximum number
of characters that can be
used in generated function,
typedef, and variable names.

Generate scalar inline
parameters as

Control how scalar inlined
parameter values are
expressed in generated code.

#define naming Define rules that change the
names of a model’s parameters
that have a storage class of
Define.

Parameter naming Define rules that change the
names of all of a model’s
parameters.

Signal naming Define rules that change the
names of a model’s signals.

Real-Time Workshop:
Interface

Target floating-point math
environment

Specify the math library to be
used. Support for the GNU C
math library was added as an
option.

Support floating-point
numbers

Enable or suppress the
generation of floating-point
numbers. To generate pure
integer code, clear this option.

Support complex numbers Enable or suppress the
generation of complex
numbers.

5-6

New Features

Pane and Subpane Option Usage

Support non-finite numbers Enable or suppress the
generation of nonfinite
numbers.

Support absolute time Generate integer counters that
provide absolute or elapsed
time values for blocks in the
model.

Support continuous time Generate code for continuous
time blocks.

Pass root-level I/O as Control how input and output
values at the root level of
the model are passed to the
model_step function. Enable
only if you select Generate
reusable code.

GRT compatible call interface Use ERT features with a
GRT-based custom target that
has a main program based on
grt_main.c.

Data Exchange: Interface Generate external mode
support code, ASAP2 data files,
or C API code for monitoring
signals and parameters.

Real-Time Workshop:
Templates

Source file (*.c) template Create or edit a code template.

Source file (*.h) template Create or edit a data template.

File customization template Specify a custom file
processing (CFP) template,
which organizes generated
code into sections – includes,
typedefs, functions, and so on.

Generate an example main
program

Control whether ert_main.c
is generated.

5-7

5 Real-Time Workshop Embedded Coder 4.0 Release Notes

Pane and Subpane Option Usage

Target operating system Generate a bare-board main
program designed to run under
control of a real-time clock
without a real-time operation
system or a fully commented
example showing how to
deploy the code under the
VxWorks real-time operating
system.

Real-Time Workshop: Data
Placement

Data definition Specify whether data is to
be defined in the generated
source file or in a single
separate header file.

Data reference Specify whether data is to
be declared in the generated
source file or in a single
separate header file

Module naming Name the generated module
using the same name as the
model or a user-specified
name.

Signal display level Specify whether to declare
signal data objects as global
data in the generated code.

Parameter tune level Declare a parameter data
object as tunable global data
in the generated code.

#include file delimiter Specify the #include file
delimiter to be used in
generated files that contain
the #include preprocessor
directive for MPF data objects.

Source of initial values Specify the source that
initializes the model’s signals
in the generated code.

5-8

New Features

Pane and Subpane Option Usage

Optimization Application lifespan (days) Minimize the allocation
of memory for absolute
and elapsed time counters
generated for blocks that
require an absolute or elapsed
time value. The word size
of the counters is allocated
optimally to accommodate
the maximum value that you
specify for this parameter.

Remove root-level I/O zero
initialization

Specify whether initialization
code for root-level inports
and outports with a value
of zero are to be generated.
Previously labeled Initialize
external data. Default is now
cleared rather than set.

Remove internal state zero
initialization

Specify whether initialization
code for work structures, such
as block states and block
outputs, are to be generated.
Previously labeled Initialize
internal data. Default is now
cleared rather than set.

Use memset to initialize floats
and doubles

Specify whether internal
storage, regardless of type, is
to be cleared to the integer bit
pattern 0 or the memset
function is to set float
and double storage to 0.0.
Previously labeled Initialize
Floats and Doubles to 0.0.
Default is now cleared rather
than set.

5-9

5 Real-Time Workshop Embedded Coder 4.0 Release Notes

Pane and Subpane Option Usage

Optimize initialization code
for memory reference

Specify whether a model
contains an enabled subsystem
and will be referred to by
another model with a Model
block. If these conditions exist,
the option should be cleared.

Remove code that protects
against division arithmetic
exceptions

Suppress generation of code
that guards against fixed-point
division by zero exceptions.

Note The Symbol format option supports all functions previously
implemented by the Prefix model name to global identifiers, Include
system Hierarchy Number in Identifiers, and Include data type
acronym in identifier options in a more compact form. The Symbol format
option replaces all these options. However, existing models will continue to
generate code that respects the settings of the previous options.

Detailed descriptions of options specific to the ERT target are provided in:

• The “Code Generation Options and Optimizations” chapter of the Real-Time
Workshop Embedded Coder documentation.

• The Module Packaging Features document.

GRT and ERT Target Unification
Release 14 introduced Generic Real-Time (GRT) and Embedded Real-Time
(ERT) target unification enhancements. The enhancements include the
following changes to the underlying technology for Real-Time Workshop and
Real-Time Workshop Embedded Coder.

• Both products use a common format for backend generated code.

• The feature list common to both products is expanded.

5-10

New Features

• Some features and efficiencies formerly exclusive to the ERT target are
now available to the GRT target. Conversely, the ERT target now supports
some features that were previously available only with the GRT target.

• Conversion from GRT-based targets to ERT-based targets is greatly
simplified.

See the “Real-Time Workshop 6.0 Release Notes” for a high-level overview
and comparison of feature enhancements and compatibility issues that result
from target unification in Real-Time Workshop 6.0 and Real-Time Workshop
Embedded Coder 4.0.

Support for Continuous Time Blocks
The ERT target now supports code generation for continuous time blocks. If
you select the Support continuous time option in the Interface subpane
under Real-Time Workshop on the Configuration Parameters dialog, you
can use any such blocks in your models, without restriction.

Note that use of certain continuous time blocks is not recommended for
production code generation for embedded systems. The Simulink Block Data
Type Support table summarizes characteristics of blocks in the Simulink and
Fixed-Point block libraries, including whether or not they are recommended
for use in production code generation. To view this table, execute the following
MATLAB command:

showblockdatatypetable

Then, refer to the "Recommended for Production Code?" column of the table.

Support for Continuous Solvers
The ERT target now supports continuous solvers. You can select any
solver from the Solver menu on the Solver pane of the Configuration
Parameters dialog. However, note that the solver Type must be fixed-step
for use with the ERT target, as in previous releases.

5-11

5 Real-Time Workshop Embedded Coder 4.0 Release Notes

Note Custom targets must be modified to support continuous time. The
required modifications are described in “Supporting Continuous Time in
Custom Targets” on page 4-8.

Support for Noninlined S-Functions
In previous releases, the ERT target required that all S-functions in a model
be inlined with a corresponding TLC file for code generation. This restriction
has been removed. Models can now include noninlined S-functions.

To enable support for noninlined S-functions, select the Support non-inlined
S-functions option in the Interface subpane under Real-Time Workshop
on the Configuration Parameters dialog.

Note that inlining S-functions is often advantageous in production code
generation, for example in implementing device drivers. See “Tradeoffs in
Device Driver Development” in the Developing Embedded Targets document
for a discussion of the pros and cons.

Module Packaging Features
Module Packaging Features (MPF) are a major subcomponent of the
Real-Time Workshop Embedded Coder. These features enable teams of
engineers to apply the Real-Time Workshop Embedded Coder for generating
ANSI/ISO production code and executables for large-scale, multimodel control
system applications.

The Module Packaging Features document describes these features in detail.
This note summarizes the capabilities of MPF.

5-12

New Features

Introduction
With MPF, you can

• Package the generated code into the desired number of .c and .h files.

• Control the internal organization of each of the generated files. For
example, for readability, your company may have software standards that
define where to place comments and sections of code within files.

• Control whether or not the generated files contain definitions for a model’s
global identifiers. If such definitions exist, you determine the files in which
the code generator places them. Also, you can specify the generated files
where the code generator places global data (extern) declarations.

In addition to meeting the preceding packaging needs, you can use MPF to

• Register user-defined data types.

• Customize comments.

• Locate variables in target memory where desired.

You implement these features with available dialogs, user-definable
templates, and M-scripts.

MPF Feature Summary
This section summarizes the module packaging features introduced in
Real-Time Workshop Embedded Coder Version 4.0. MPF allows you to

• Select or define MPF template files. You can generate the desired .c and .h
files and organize them the way you want. Also, these templates include
template symbols whose locations in a template file determine where
comments and code is located in the individual generated files.

• Manage the code generation data dictionary. This allows

- Registering user-defined data types

- Importing data objects into the code generation data dictionary from
a .mat file of a previous Simulink session or from an external data
dictionary (such as an Excel file)

5-13

5 Real-Time Workshop Embedded Coder 4.0 Release Notes

- Adding Simulink data objects using the Data Object Wizard

- Changing the alphabetical case and spellings that identifier names have
in the generated code

• Select additional miscellaneous and advanced options. These include

- Instructing the code generator to use the angle-bracket delimiter (for
multiple data objects), instead of the double-quotation delimiter.

- Selecting the source that initializes each of the model’s signals in the
generated code.

- Adding a selected data object’s property values as a comment in a
generated file above that data object’s identifier.

- Adding a comment to the model using the Simulink DocBlock so that
this comment appears in the generated file where desired.

• Manage file placement of data declarations. You can determine whether
or not the generated files contain defining declarations for a model’s
global identifiers. If defining declarations exist, you can determine the
files in which the code generator places them. Also, you can determine
the files where the code generator places global data reference (extern)
declarations.

ASAP2 File Generation Changes
ASAP2 file generation is now available to all Real-Time Workshop targets.
The documentation for this feature has been relocated to “Generating an
ASAP2 File” in the Real-Time Workshop documentation.

Code Generation With User-Defined Data Types
Real-Time Workshop Embedded Coder now supports user-defined data type
objects in code generation. Supported objects include objects of the following
classes:

• Simulink.NumericType

• Simulink.StructType

• Simulink.Bus

• Simulink.Aliastype

5-14

New Features

In code generation, you can use user-defined data type objects to map your
own data type definitions to Simulink built-in data types, and to generate
#include directives specifying your own header files, containing your data
type definitions.

See the “Advanced Code Generation Techniques” chapter of the Real-Time
Workshop Embedded Coder documentation for details.

Enhanced Custom Storage Classes
The Real-Time Workshop Embedded Coder has extended the built-in
storage classes provided by Real-Time Workshop. The Real-Time Workshop
Embedded Coder now includes:

• A set of custom storage classes (CSCs). CSCs are designed to be useful
in code generation for embedded systems development. The new
enhanced and expanded CSC functionality has been incorporated into the
Simulink.Signal and Simulink.Parameter classes. This simplifies code
generation with CSCs, since you can use familiar signal and parameter
objects for this purpose.

• The new Custom Storage Class Designer (cscdesigner) tool. The Custom
Storage Class Designer lets you define additional CSCs that are tailored to
your code generation requirements. The Custom Storage Class Designer
provides a graphical user interface that lets you implement CSCs quickly
and easily. You can use your CSCs in code generation immediately, without
any TLC or other programming.

CSCs give you extended control over the constructs required to represent data
in an embedded algorithm. For example, you can use CSCs to

• Define structures for storage of parameter or signal data.

• Conserve memory by storing Boolean data in bit fields.

• Integrate generated code with legacy software whose interfaces cannot
be modified.

• Generate data structures and definitions that comply with your
organization’s software engineering guidelines for safety-critical code.

5-15

5 Real-Time Workshop Embedded Coder 4.0 Release Notes

See the “Custom Storage Classes” chapter of the Real-Time Workshop
Embedded Coder User’s Guide for a detailed description of CSCs and the
Custom Storage Class Designer.

Compatibility with Previous CSCs
In prior releases, CSCs were implemented via special Simulink.CustomSignal
and Simulink.CustomParameter classes. We recommend that you consider
replacing Simulink.CustomSignal and Simulink.CustomParameter objects
in your models with equivalent Simulink.Signal and Simulink.Parameter
objects.

Minor changes have been made in the Simulink.CustomSignal and
Simulink.CustomParameter classes. See “Custom Storage Class
Compatibility Issues” on page 4-5 for information on these changes.

More Efficient Multi-Rate Multitasking Code
Generation
Real-Time Workshop Embedded Coder now generates significantly faster code
for multirate multitasking models.

For multirate multitasking models, Real-Time Workshop Embedded Coder
uses a strategy called rate grouping. Rate grouping generates separate
model_step functions for the base rate task and each subrate task in the
model. The function naming convention for these functions is

model_stepN

where N is a task identifier. For example, for a model named my_model that
has three rates, the following functions are generated:

void my_model_step0 (void);
void my_model_step1 (void);
void my_model_step2 (void);

Each model_stepN function executes all blocks sharing tid N; in other words,
all block code that executes within task N is grouped into the associated
model_stepN function.

5-16

New Features

For other cases, Real-Time Workshop Embedded Coder generates a single
model_step function. This model_step function uses the same scheduling
technique (called rate guarding) as in previous versions of the product. When
rate guarding is used, a task identifier is passed in to the model_step function.

To take advantage of rate grouping for existing multirate multitasking
models, you must regenerate code, including the main program, ert_main.c.

See the “Data Structures and Program Execution” chapter of the Real-Time
Workshop Embedded Coder documentation for a complete discussion of rate
grouping.

More Efficient Task Scheduling for RTOS Targets
Using a new rtmStepTask macro, targets that employ the task management
mechanisms of an RTOS can eliminate certain redundant scheduling calls
during the execution of tasks in a multirate, multitasking model, thereby
improving performance of the generated code.

The redundant scheduling calls are still generated by default for backward
compatibility. However, you can suppress them by adding the following
TLC variable definition to your system target file before the %include
"codegenentry.tlc" statement:

%assign SuppressSetEventsForThisBaseRateFcn = 1

For more details on this feature, see “Optimizing Task Scheduling for RTOS
Targets” in the Real-Time Workshop Embedded Coder documentation.

New Callbacks Defined for System Target Files
The Release 14 API for system target file callbacks provides three new
callback functions for use in system target files. Unlike rtwoptions callbacks,
these functions are associated with the target, not with its individual options.
The callbacks are installed as fields in the rtwgensettings structure of the
system target file. The callbacks, summarized in the next table, are fully
described in the “System Target Files” chapter of Developing Embedded
Targets.

5-17

5 Real-Time Workshop Embedded Coder 4.0 Release Notes

Callback Function... Is Triggered...

rtwgensettings.SelectCallback During model loading and when you select a target
with the System Target File browser.

rtwgensettings.ActivateCallback When the active configuration set of the model
changes. This could happen during model loading
and when you change the active configuration set.

rtwgensettings.postapplyCallback When you click Apply or OK after editing options
in the Configuration Parameters dialog or the
Model Explorer. The function is called after the
changes have been applied to the configuration set.

Note If you have developed a custom target and you want it to be compatible
with model referencing, you must implement a SelectCallback function
to declare model reference compatibility. See the “Supporting Model
Referencing” chapter of Developing Embedded Targets.

New Option to Control Template Makefile Output
Display
A new template makefile option lets you control whether or not template
makefile output is displayed during the build process. To enable makefile
output display at all times (regardless of the setting of the Verbose build
option in the Real-Time Workshop Debugging pane) add the following macro
to your template makefile:

VERBOSE_BUILD_OFF_TREATMENT = PRINT_OUTPUT_ALWAYS

When you configure your template makefile this way, the Verbose build
option controls the display of other build process output (such as TLC
messages), but template makefile output is always displayed.

You should add this macro in the template makefile section that includes
other macros, such as BUILD_SUCCESS.

5-18

New Features

Demo Updates
This release includes a major update and reorganization of the Real-Time
Workshop and Real-Time Workshop Embedded Coder demo collection. If you
are reading this document online in the MATLAB Help browser, you can open
the demo suite by clicking this link: rtwdemos.

Alternatively, you can access the demo suite by typing the name of the demo
library at the MATLAB command prompt:

rtwdemos

5-19

5 Real-Time Workshop Embedded Coder 4.0 Release Notes

Major Bug Fixes
The Real-Time Workshop Embedded Coder 4.0 includes several bug fixes
made since Version 3.2.1. This section describes the particularly important
Version 4.0 bug fixes.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the "bug fixes" link provided.

5-20

6

Real-Time Workshop
Embedded Coder 3.2.1
Release Notes

6 Real-Time Workshop Embedded Coder 3.2.1 Release Notes

New Features
This section summarizes the new features and enhancements introduced in
the Real-Time Workshop Embedded Coder 3.2.1.

ERT Code Deployment Aids Added to GUI
A new group of buttons has been added to the Embedded Real-Time (ERT)
target options in the Real-Time Workshop pane of the Simulation
Parameters dialog box. To access these buttons, select ERT code
deployment aids from Category menu, as shown in the figure below.

6-2

New Features

The ERT code deployment aids buttons provide quick access to features and
information that can help you to optimize your generated code. The buttons
are:

• Model Assistant Tool - documentation: Click this button to view online
help for the Model Assistant Tool in the MATLAB Help browser. You can
also view this help by typing the MATLAB command

modelassistant('help')

• Model Assistant Tool - configuration: Click this button to open the
Model Assistant Tool for configuration of options.

• Target code customization guide: Click this button to view the
“Advanced Code Generation Techniques” chapter of the Real-Time
Workshop Embedded Coder documentation. The chapter documents useful
code generation, optimization, and customization techniques for the ERT
target. Most of the features described were introduced in the Real-Time
Workshop Embedded Coder 3.2 (see Chapter 7, “Real-Time Workshop
Embedded Coder 3.2 Release Notes” for a summary).

• Block summary support table: Click this button to view the Simulink
Block Data Type Support Table in the MATLAB Help Browser. The table
describes the data types that are supported by the blocks in the main
Simulink and Fixed-Point libraries. The table also identifies blocks that
are suitable for production code generation. You can also view the table
by typing the MATLAB command

showblockdatatypetable

• Tutorial: Click this button to open an interactive Real-Time Workshop
Embedded Coder tutorial demo in the in the MATLAB Help Browser. You
can also view the tutorial demo by typing the MATLAB command

ecodertutorial

• Demos: Click this button to open the Real-Time Workshop Embedded
Coder demo suite. You can also view the demos by typing the MATLAB
command

ecoderdemos

6-3

6 Real-Time Workshop Embedded Coder 3.2.1 Release Notes

Major Bug Fixes
Real-Time Workshop Embedded Coder 3.2.1 includes important bug fixes
made since Version 3.2.

If you are viewing these Release Notes in PDF form, refer to the HTML form
of the Release Notes, using either the Help browser or the MathWorks Web
site, and use the "bug fixes" link provided.

6-4

7

Real-Time Workshop
Embedded Coder 3.2
Release Notes

7 Real-Time Workshop Embedded Coder 3.2 Release Notes

New Features
This section summarizes the new features and enhancements introduced in
the Real-Time Workshop Embedded Coder 3.2. The new features include:

• “Advanced Code Generation Techniques Documented” on page 7-2

• “New Code Generation Options” on page 7-3

• “Auto-Configuration of Models for Code Generation” on page 7-5

• “Optimized ERT Targets for Fixed-Point and Floating-Point Code
Generation” on page 7-6

• “Code Templates for Customizing Generated Code” on page 7-7

• “Custom File Banner Generation” on page 7-7

• “Passing Model I/O Arguments to the model_step Function” on page 7-8

Advanced Code Generation Techniques Documented
A new chapter, “Advanced Code Generation Techniques”, has been added
to the Real-Time Workshop Embedded Coder User’s Guide. This chapter
contains complete information on the new features that are summarized
in these release notes. In addition, the chapter documents useful code
generation, optimization, and customization techniques that have not received
wide exposure in previous releases. These include

• How to specify target characteristics (such as word sizes for C data types)
for the build process, so that generated code is correct for deployment on
target hardware

• A general hook file mechanism for adding target-specific customizations
to the build process

7-2

New Features

New Code Generation Options
Several new code generation options have been added, and some changes
have been made to the layout of Embedded Real-Time (ERT) target code
generation options in the Real-Time Workshop pane of the Simulation
Parameters dialog box.

Options Layout Changes and Additions
The Suppress error status in real-time model data structure option
has been relocated to the ERT code generation options (2) category, as
shown in this figure.

7-3

7 Real-Time Workshop Embedded Coder 3.2 Release Notes

A new code generation option, Pass model I/O arguments as structure
reference, is now available in the ERT code generation options (3)
category, as shown below. This option is described in “Passing Model I/O
Arguments to the model_step Function” on page 7-8.

7-4

New Features

A new group of options supporting use of code templates, a powerful and
simple technique for customizing generated code, has been added. These
options are available in the ERT code templates category of the Real-Time
Workshop pane of the Simulation Parameters dialog (see the figure
below). Code templates are summarized in “Code Templates for Customizing
Generated Code” on page 7-7.

Auto-Configuration of Models for Code Generation
The Real-Time Workshop Embedded Coder now supports automated
configuration of all (or selected) model parameters during the code generation
process. By automatically configuring a model in this way, you can avoid
manually configuring models. This saves time and eliminates potential errors.

Auto-configuration is performed by executing an M-file (referred to as a
hook file) that is executed as part of the target build process. Therefore,
auto-configuration becomes a function of the target that invokes the hook file.
You can direct the automatic configuration process to save existing model
settings before code generation and restore them afterwards, so that options
the user chooses manually are not disturbed.

7-5

7 Real-Time Workshop Embedded Coder 3.2 Release Notes

The automatic configuration process, and utilities provided to support
auto-configuration, are described in the “Advanced Code Generation
Techniques” chapter of the Real-Time Workshop Embedded Coder User’s
Guide.

Optimized ERT Targets for Fixed-Point and
Floating-Point Code Generation
To make it easier for you to customize a hook file that is optimized for
your target hardware, Real-Time Workshop Embedded Coder provides two
variants of the ERT target:

• RTW Embedded Coder (auto configures for optimized fixed-point
code): To optimize for fixed-point code generation, select this target from
the System Target File Browser.

• RTW Embedded Coder (auto configures for optimized
floating-point code): To optimize for floating-point code generation,
select this target from the System Target File Browser.

The use of these targets is detailed in the “Advanced Code Generation
Techniques” chapter of the Real-Time Workshop Embedded Coder User’s
Guide.

7-6

New Features

Code Templates for Customizing Generated Code
The ERT target now supports use of custom file processing templates (CFP
templates).

A CFP template is a Target Language Compiler (TLC) file that calls a
high-level applications programming interface (API), referred to as the code
template API. The code template API simplifies generation of custom source
code by letting you

• Generate virtually any type of source (.c) or header (.h) file. A CFP
template can emit code to the standard generated model files (e.g., model.c,
model.h, etc.) or generate files that are independent of model code.

• Organize generated code into sections (such as includes, typedefs,
functions, and more). Your CFP template can emit code (e.g., functions),
directives (such as #define or #include statements), or comments into
each section as required.

• Generate code to call model functions such as model_initialize,
model_step, etc.

• Generate code to read and write model inputs and outputs.

• Generate a main program module.

• Obtain information about the model and the files being generated from it.

CFP templates are described in the “Advanced Code Generation Techniques”
chapter of the Real-Time Workshop Embedded Coder User’s Guide.

Custom File Banner Generation
The ERT target now supports use of banner templates during code generation.
A banner template is a TLC file that specifies banner and trailer comments
that are emitted to generated source (.c) and header (.h) files. Banner
templates are described in the “Advanced Code Generation Techniques”
chapter of the Real-Time Workshop Embedded Coder User’s Guide.

7-7

7 Real-Time Workshop Embedded Coder 3.2 Release Notes

Passing Model I/O Arguments to the model_step
Function
A new code generation option, Pass model I/O arguments as structure
reference, lets you control how model inputs and outputs at the root
level of the model are passed in to the model_step function. This option
is available in the ERT code generation options (3) category of the
Real-Time Workshop pane of the Simulation Parameters dialog box.
When Generate reusable code is selected, Pass model I/O arguments as
structure reference is enabled, as shown in this figure.

When Pass model I/O arguments as structure reference is deselected
(the default), each root-level model input and output is passed to model_step
as a separate argument. When this option is selected, all root-level inputs
are packed into a struct that is passed to model_step as an argument.
Likewise, all root-level outputs are packed into a struct that is also passed
to model_step as an argument. Selecting Pass model I/O arguments as
structure reference can reduce the number of arguments passed in to
model_step.

See the “Code Generation Options and Optimizations” chapter of the
Real-Time Workshop Embedded Coder User’s Guide for further details.

7-8

8

Real-Time Workshop
Embedded Coder 3.1
Release Notes

8 Real-Time Workshop Embedded Coder 3.1 Release Notes

New Features
This section summarizes the new features and enhancements introduced in
the Real-Time Workshop Embedded Coder 3.1.

Model Assistant Tool
The Model Assistant Tool is a utility that lets you configure a model for code
generation quickly. The Model Assistant Tool also helps you to identify aspects
of your model that impede production deployment or limit code efficiency. You
can use the Model Assistant Tool at any point in your design cycle, as it is
completely independent from the code generation process.

The Model Assistant Tool is designed primarily for use with Real-Time
Workshop Embedded Coder. It works most effectively with the Embedded
Real-Time (ERT) target and with ERT-based targets (such as the Embedded
Target for Motorola MPC555). It will also operate with other targets.

The figure below shows the top-level window of the Model Assistant Tool.

8-2

New Features

Four main components of the Model Assistant Tool provide a powerful and
centralized interface for configuring settings for Simulink blocks, Stateflow®

charts, models and subsystems. You select these components via the four
buttons at the top of the Model Assistant display:

• General Code Generation Goals

• Detailed Code Generation Goals

• Model Advisor

• Search and Modify

These components are summarized in the next sections.

General Code Generation Goals
This component lets you quickly configure code generation settings based on
specific goals, such as whether to optimize for RAM or ROM usage. Once you
have decided the overall optimization and tradeoffs for your application, the
Model Assistant Tool will select the model settings that best suit your goals.

Detailed Code Generation Goals
This component presents a centralized interface to the available code
generation options. Options are grouped by category, and are applied across
products.

Model Advisor
The Model Advisor component is particularly useful early in the design
cycle. It provides an analysis of your model to ensure that you best utilize
Real-Time Workshop Embedded Coder. You can check selected aspects of
your model settings (for example, to identify possible inefficiencies such as
blocks that generate saturation and rounding code) or choose Select All for a
comprehensive analysis.

Search and Modify
This component is a powerful model search and modify engine. It reduces the
effort of configuring a model block by block. The search feature helps you
find attributes of blocks, lines, input ports, output ports, and annotations

8-3

8 Real-Time Workshop Embedded Coder 3.1 Release Notes

quickly. The modify feature lets you perform rapid batch operations on the
search results. Frequently performed tasks are packaged conveniently into
a single button click.

The Search and Modify component includes the following features:

• The Frequent tasks page lets you quickly perform common actions.

• The Simulink object search page lets you specify a general Simulink
object search and modify action. This search mechanism is useful when you
know the specific names of underlying attributes.

• The Stateflow object search page lets you quickly configure the Stateflow
data in your model. This is particularly useful for converting data from
floating point to fixed-point types.

• The Search and replace Simulink text page lets you quickly modify text
for objects in Simulink. For example, you can change all occurrences of
'K1' to 'K2'. The semantics of the search and replace are the same as for
the Stateflow search and replace tool that ships with Stateflow.

• Two Parameter name search mechanisms are provided:

- Search and modify parameters using prompt strings. This search
mechanism is useful when you know the parameter by its dialog prompt
string, but you don’t know the name of the underlying attribute.

- "Fuzzy" search using property and/or value pairs. This search
mechanism is useful for isolating the name of an underlying attribute.

Using the Model Assistant Tool
You run Model Assistant Tool from the MATLAB command line, via the
modelassistant command. Before invoking the Model Assistant Tool, make
sure that the desired target (such as the ERT target) is selected in the Target
Configuration section of the Real-Time Workshop pane of the Simulation
Parameters dialog box.

8-4

New Features

The following examples illustrate the modelassistant command syntax and
its possible arguments.

To obtain detailed help on the Model Assistant Tool, type

modelassistant('help')

To invoke the Model Assistant Tool for the root system of a model, type

modelassistant('model_name')

where model_name is the name of the model.

To invoke the Model Assistant Tool for a particular system in a model, type

modelassistant('system_name')

where system_name is the name of the system.

You can also invoke the Model Assistant Tool for models and systems using
the built-in Simulink bdroot, gcb, and gcs commands. For example:

modelassistant(gcs)

Further Help and Demos
The above sections have summarized the main features of the Model Assistant
Tool. To obtain full online documentation on the Model Assistant Tool, type

modelassistant('help')

There are also three demo models available for the Model Assistant Tool:
advisordemo1, advisordemo2, and advisordemo3.

8-5

	toc
	Real-Time Workshop® Embedded Coder Release Notes
	Real-Time Workshop Embedded Coder 4.3 Release Notes
	New Features and Enhancements
	Data Type Replacement
	Specifying Replacement Data Types
	Data Type Replacement Limitations

	HeaderFile Property Now Optional as Part of GetSet Data Object
	Data Object Wizard Enhancements
	Global Data Stores Can Be Initialized Using mpt.Signal Object's
	Documentation Enhancements

	Major Bug Fixes
	Known Software and Documentation Problems
	Upgrading from an Earlier Release
	ERT Automatic Configuration Changes

	Real-Time Workshop Embedded Coder 4.2.1 Release Notes
	Major Bug Fixes

	Real-Time Workshop Embedded Coder 4.2 Release Notes
	New Features and Enhancements
	C++ Target Language Support
	External Mode Support for ERT VxWorks Example Target
	Custom Storage Classes with ERT S-Functions
	Consistency Checking for ERT Target Options
	Model Explorer “Alias Override Naming Rule” Check Box Removed
	Model Explorer Data Object Header File No Longer Generated If He
	Enhanced MPF Documentation of Managing Data Dictionary

	Major Bug Fixes

	Real-Time Workshop Embedded Coder 4.1 Release Notes
	Major Bug Fixes
	Upgrading from Version 4.0
	Upgrading from Version 3.2.1 or 3.2
	TMF File Update Required for Use with Release 14 or Higher If Su
	Custom Storage Class Compatibility Issues
	Defining and Displaying Custom Target Options
	Supporting Model Referencing in Custom Targets
	Supporting Continuous Time in Custom Targets
	Template Makefile Modifications
	Modifications to Main Program Module

	rtwtypes.h Replaces tmwtypes.h
	Updating Customized Static Main Program Modules
	Integer Code Only Option Replaced
	Rate Grouping Compatibility Issues
	Real-Time Object Structure Obsoleted by Real-Time Model Structur
	rtmIsSampleHit and rtmIsSpecialSampleHit Macros Obsolete
	RTWInfo Properties Assignment Warning Message

	Real-Time Workshop Embedded Coder 4.0 Release Notes
	New Features
	Expanded Documentation Collection
	New ERT Target Options User Interface
	GRT and ERT Target Unification
	Support for Continuous Time Blocks
	Support for Continuous Solvers
	Support for Noninlined S-Functions
	Module Packaging Features
	Introduction
	MPF Feature Summary

	ASAP2 File Generation Changes
	Code Generation With User-Defined Data Types
	Enhanced Custom Storage Classes
	Compatibility with Previous CSCs

	More Efficient Multi-Rate Multitasking Code Generation
	More Efficient Task Scheduling for RTOS Targets
	New Callbacks Defined for System Target Files
	New Option to Control Template Makefile Output Display
	Demo Updates

	Major Bug Fixes

	Real-Time Workshop Embedded Coder 3.2.1 Release Notes
	New Features
	ERT Code Deployment Aids Added to GUI

	Major Bug Fixes

	Real-Time Workshop Embedded Coder 3.2 Release Notes
	New Features
	Advanced Code Generation Techniques Documented
	New Code Generation Options
	Options Layout Changes and Additions

	Auto-Configuration of Models for Code Generation
	Optimized ERT Targets for Fixed-Point and Floating-Point Code Ge
	Code Templates for Customizing Generated Code
	Custom File Banner Generation
	Passing Model I/O Arguments to the model_step Function

	Real-Time Workshop Embedded Coder 3.1 Release Notes
	New Features
	Model Assistant Tool
	General Code Generation Goals
	Detailed Code Generation Goals
	Model Advisor
	Search and Modify
	Using the Model Assistant Tool
	Further Help and Demos

